Comprehensive interpretation of single-nucleotide substitutions in GJB2 reveals the genetic and phenotypic landscape of GJB2-related hearing loss
Human Genetics, ISSN: 1432-1203, Vol: 142, Issue: 1, Page: 33-43
2023
- 5Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- Captures9
- Readers9
Article Description
Genetic variants in GJB2 are the most frequent cause of congenital and childhood hearing loss worldwide. The purpose of this study was to delineate the genetic and phenotypic landscape of GJB2 SNV variants. All possible single-nucleotide substitution variants of the coding region of GJB2 (N = 2043) were manually curated following the ACMG/AMP hearing loss guidelines. As a result, 60 (2.9%), 177 (8.7%), 1499 (73.4%), 301 (14.7%) and 6 (0.3%) of the variants were classified as pathogenic, likely pathogenic, variant of uncertain significance, likely benign, and benign, respectively. 53% (84/158) of the pathogenic/likely pathogenic missense variants were not present in ClinVar. The second transmembrane domain and the 3 helix were highly enriched for pathogenic missense variants, while the intracellular loops were tolerant to variation. The N-terminal tail and the extracellular loop showed high clustering of variants that are associated with syndromic or dominant non-syndromic hearing loss. In conclusion, our study interpreted all possible single-nucleotide substitution coding variants, characterized novel clinically significant variants in GJB2, and revealed significant genotype–phenotype correlations at this common hearing loss locus. Our work provides a prototype for other genes with similarly high genetic and phenotypic heterogeneity.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137069411&origin=inward; http://dx.doi.org/10.1007/s00439-022-02479-0; http://www.ncbi.nlm.nih.gov/pubmed/36048236; https://link.springer.com/10.1007/s00439-022-02479-0; https://dx.doi.org/10.1007/s00439-022-02479-0; https://link.springer.com/article/10.1007/s00439-022-02479-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know