Update on stereology for light microscopy
Cell and Tissue Research, ISSN: 1432-0878, Vol: 360, Issue: 1, Page: 5-12
2015
- 50Citations
- 58Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef24
- Captures58
- Readers58
- 58
Review Description
The quantitative investigation of images taken from light microscopy observation is one of the pillars of biological and biomedical investigation. The main objective is the count of objects, usually cells. In addition, the measurement of several morphological parameters, such as the diameter of cells, the length of vessels, etc., can also be important for the quantitative assessment of the features of a tissue. Whereas counting and measuring histological elements may appear easy, especially today with the availability of dedicated software, in fact it is not, since what we can count and measure on light microscopy images are not the true histological elements but actually profiles of them. Obviously, the number and size of profiles of an object do not correspond to the object number and size and thus significant mistakes can be made in the interpretation of the quantitative data obtained from profiles. To cope with this problem, over the last decades, a number of design-based stereological tools have been developed in order to obtain unbiased and reliable quantitative estimates of cell and tissue elements that originate from light microscopy images. This paper reviews the basic principles of the stereological tools from the first disector applications through some of the most recently devised methods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84939981585&origin=inward; http://dx.doi.org/10.1007/s00441-015-2143-6; http://www.ncbi.nlm.nih.gov/pubmed/25743692; http://link.springer.com/10.1007/s00441-015-2143-6; https://dx.doi.org/10.1007/s00441-015-2143-6; https://link.springer.com/article/10.1007/s00441-015-2143-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know