PlumX Metrics
Embed PlumX Metrics

Union is strength: matrix elasticity and microenvironmental factors codetermine stem cell differentiation fate

Cell and Tissue Research, ISSN: 1432-0878, Vol: 361, Issue: 3, Page: 657-668
2015
  • 17
    Citations
  • 0
    Usage
  • 48
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Review Description

Stem cells are an attractive cellular source for regenerative medicine and tissue engineering applications due to their multipotency. Although the elasticity of the extracellular matrix (ECM) has been shown to have crucial impacts in directing stem cell differentiation, it is not the only contributing factor. Many researchers have recently attempted to design microenvironments that mimic the stem cell niche with combinations of ECM elasticity and other cues, such as ECM physical properties, soluble biochemical factors and cell–cell interactions, thereby driving cells towards their preferred lineages. Here, we briefly discuss the effect of matrix elasticity on stem cell lineage specification and then summarize recent advances in the study of the combined effects of ECM elasticity and other cues on the differentiation of stem cells, focusing on two aspects: biophysical and biochemical factors. In the future, biomedical scientists will continue investigating the union strength of matrix elasticity and microenvironmental cues for manipulating stem cell fates.

Bibliographic Details

Lv, Hongwei; Li, Lisha; Zhang, Yin; Chen, Zhishen; Sun, Meiyu; Xu, Tiankai; Tian, Licheng; Lu, Man; Ren, Min; Liu, Yuanyuan; Li, Yulin

Springer Science and Business Media LLC

Medicine; Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know