Interactions at surface–subterranean ecotones: structure and function of food webs within spring orifices
Oecologia, ISSN: 1432-1939, Vol: 196, Issue: 1, Page: 235-248
2021
- 8Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Spring orifices are ecotones between surface and subterranean aquatic ecosystems. Invertebrates of different origins (e.g., surface, spring obligate, and subterranean) coexist in these spatially restricted environments, potentially competing for resources. However, processes that allow for population coexistence in these presumably low resource environments are not well understood. We examined invertebrate communities at two spring complexes in Texas, USA and assessed resource use and food web structure at spring orifices using stable isotopes of carbon (δC) and nitrogen (δN). Using bulk δC and δN of organisms and potential food sources, we elucidated dietary sources and found that invertebrate communities exhibited resource partitioning and contained two main food chains (periphyton versus terrestrial organic matter [OM]). In both spring complexes, several endemic spring orifice associated and subterranean taxa derived most of their diet from terrestrial OM. Analysis of compound-specific stable isotopes (i.e., δC of essential amino acids, EAAs) from two co-occurring elmid species indicated that the endemic spring orifice-associated species (Heterelmis comalensis) derived > 80% of its EAAs from bacteria, whereas the widespread surface species (Microcylloepus pusillus) derived its EAAs from a more equitable mix of bacteria, fungi, and algae. We additionally calculated niche overlap among of several taxonomically related groups (aquatic beetles and amphipods) that co-occur in spring ecotones and posterior probability estimates indicated little to no niche overlap among related species. Results indicate that invertebrates at subterranean—surface aquatic ecotones are partitioning food resources and highlight the importance of connections to riparian zones for persistence of several endemic invertebrates.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85103873656&origin=inward; http://dx.doi.org/10.1007/s00442-021-04912-z; http://www.ncbi.nlm.nih.gov/pubmed/33825952; https://link.springer.com/10.1007/s00442-021-04912-z; https://dx.doi.org/10.1007/s00442-021-04912-z; https://link.springer.com/article/10.1007/s00442-021-04912-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know