Extension of first principle elemental balancing soft-sensors by nonlinear reaction kinetics for increased robustness in bioprocess monitoring
Bioprocess and Biosystems Engineering, ISSN: 1615-7605, Vol: 48, Issue: 2, Page: 317-329
2025
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
A first principle soft-sensor for biomass and substrate estimation in upstream bioprocessing based on the fusion of elemental balancing and nonlinear kinetics is presented. It aims to extend the validity range of well-established elemental balancing soft sensors to substrate saturated and overfeeding conditions that often occur in induced production phases. An experimental study with recombinant E. coli cultivations was conducted to illustrate the soft-sensor principle and to analyze the accuracy as well as generalizability of the approach. Under substrate limited growth the extended soft-sensor showed similar performance as classical elemental balancing. In induced production phases however, a decline in maximum substrate uptake capacity (qSmax) of up to 80% was observed, where the extended soft-sensor showed up to 41 % better estimates for the biomass and up to 75 % better estimates for the substrate in terms of NRMSE. The paper discusses the possible benefits as well as the requirements for the implementation of the extended elemental balancing soft-sensor.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85212052142&origin=inward; http://dx.doi.org/10.1007/s00449-024-03111-3; http://www.ncbi.nlm.nih.gov/pubmed/39671114; https://link.springer.com/10.1007/s00449-024-03111-3; https://dx.doi.org/10.1007/s00449-024-03111-3; https://link.springer.com/article/10.1007/s00449-024-03111-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know