Proper generalized decomposition-based iterative enrichment process combined with shooting method for steady-state forced response analysis of nonlinear dynamical systems
Computational Mechanics, ISSN: 1432-0924, Vol: 74, Issue: 5, Page: 937-953
2024
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Article Description
This paper presents a novel framework combining proper generalized decomposition (PGD) with the shooting method to determine the steady-state response of nonlinear dynamical systems upon a general periodic input. The proposed PGD approximates the response as a low-rank separated representation of the spatial and temporal dimensions. The Galerkin projection is employed to formulate the subproblem for each dimension, then the fixed-point iteration is applied. The subproblem for the spatial vector can be regarded as computing a set of reduced-order basis vectors, and the shooting problem projected onto the subspace spanned by these basis vectors is defined to obtain the temporal coefficients. From this procedure, the proposed framework replaces the complex nonlinear time integration of the full-order model with the series of solving simple iterative subproblems. The proposed framework is validated through two descriptive numerical examples considering the conventional linear normal mode method for comparison. The results show that the proposed shooting method based on PGD can accurately capture nonlinear characteristics within 10 modes, whereas linear modes cannot easily approximate these behaviors. In terms of computational efficiency, the proposed method enables CPU time savings of about one order of magnitude compared with the conventional shooting methods.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know