A thermodynamic motivated RCCM damage interface model in an explicit transient dynamics framework
Computational Mechanics, ISSN: 1432-0924, Vol: 75, Issue: 1, Page: 33-49
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A framework to solve fast dynamic problems involving a non-smooth interface behavior with contact and decohesion is under concern. In previous works, unilateral contact and impact have been studied in explicit dynamics but no damage nor cohesion were involved. Combining a contact problem and a thermodynamically motivated damage model within the so-called CD-Lagrange explicit dynamics scheme is the aim of this work. To do so, RCCM macroscopic model of adhesion with damage of the interface is studied. The thermodynamic motivation of the model and the use of a symplectic explicit scheme creates a framework based on good energy balance. In this work, illustrations and feasibility are shown for small displacement problems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know