PlumX Metrics
Embed PlumX Metrics

Hierarchical structure of juvenile hybrid aspen xylem revealed using X-ray scattering and microtomography

Trees - Structure and Function, ISSN: 0931-1890, Vol: 26, Issue: 6, Page: 1793-1804
2012
  • 14
    Citations
  • 0
    Usage
  • 33
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    14
    • Citation Indexes
      13
    • Policy Citations
      1
      • 1
  • Captures
    33

Article Description

X-ray scattering and microtomography (μCT) are useful techniques to reveal the structure of wood at the nano- and micrometer scales. The nanostructure of xylem in greenhouse-grown 2. 5- to 3. 5-month-old Populus tremula L. × tremuloides Michx. trees was characterized using wide-angle X-ray scattering (WAXS), and the cellular structure was investigated using μCT. For comparison, the nanostructure of wood in 2-year-old silver birch, Norway spruce and Scots pine saplings was determined. Based on the μCT results, the lengths of fiber lumina of the hybrid aspen saplings were shorter than any previous results on the lengths of wood fibers. The mean microfibril angles of the hybrid aspen saplings were significantly lower (8°-14°) than those of the birch, spruce and pine saplings (27°-35°) implicating that cellulose microfibrils were oriented nearly parallel to the cell axis in the young hybrid aspen saplings. Hybrid aspen saplings were found to contain tension wood based on the histochemical analysis and μCT images. However, typical tension wood properties, i. e. larger crystallite width and higher crystallinity than in normal wood, were detected only in a few hybrid aspen samples, while in most of the hybrid aspen saplings, the crystallite widths (3. 0 ± 0. 1 nm) and the crystallinities (30 ± 5 %) corresponded to those of normal wood. The deformations of cellulose crystallites were determined using WAXS in situ upon dehydration of the never-dried samples. In all the species studied, the cellulose unit cell dimension decreased and disorder of cellulose chains increased parallel to the chains upon drying. Also, the transverse disorder of chains increased in birch, spruce and pine, while no changes were detected in this direction in hybrid aspen. The crystallite widths and drying deformation results might indicate that the gelatinous layer has not fully developed in the young hybrid aspen saplings. © 2012 Springer-Verlag.

Bibliographic Details

Kirsi Svedström; Jessica Lucenius; Jussi Petteri Suuronen; Ritva Serimaa; Jan van den Bulcke; Joris van Acker; Denis van Loo; Loes Brabant; Peter Immerzeel; Ewa Mellerowicz; Pekka Saranpää; Kurt Fagerstedt

Springer Science and Business Media LLC

Agricultural and Biological Sciences; Biochemistry, Genetics and Molecular Biology; Environmental Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know