Strategies of urban trees for mitigating salt stress: a case study of eight plant species
Trees - Structure and Function, ISSN: 0931-1890, Vol: 36, Issue: 3, Page: 899-914
2022
- 9Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Key message: Some species synthesize larger amounts of polyprenols, which probably increase the plant’s ability to mitigate salt stress. Salt stress does not cause macronutrient deficiency in the leaves of urban trees. Ionic imbalance in the leaves caused by soil salinity worsens the health status of sensitive species. Abstract: Street trees are exposed to relatively high stress levels, and the average lifespan of street trees is shortened compared to those of trees living under controlled natural conditions. Soil salinity adversely affects trees at all stages of growth and development. This study attempts to determine how the urban environment, with particular emphasis on salt stress, affects tree species with different levels of salinity sensitivity. The aim of this study was to identify the strategies of eight tree species for mitigating salt stress based on the determination of the chemical composition of the macroelements in the leaves, the ionic imbalance, and the ability of the trees to synthesize and accumulate polyprenols in the leaves. The obtained results suggest that individual species implemented different strategies in response to salt stress. The low sensitivity species: Q. rubra, R. pseudoacacia, G. triacanthos and A. campestre. blocked the uptake of Cl and Na to the leaves. The medium-sensitivity species: P. x hispanica blocked the uptake of Cl and Na and G. biloba maintained very high contents of Cl and Na in its leaves without leaf damage and synthesized large amounts of polyprenols. G. triacanthos and A. campestre synthesized large amounts of polyprenols. The high-sensitivity species (T. x euchlora and A. platanoides) exhibited very high contents of Cl and Na in their leaves, which were significantly damaged and had a pronounced ionic imbalance. These effects were not compensated for by the increased synthesis of polyprenols. In conclusion, the accumulation of polyprenols in leaf tissue may be one of the strategies that increase the resistance of plants to salt stress. Plants have many other methods of mitigating salt stress.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know