Use of daily precipitation uncertainties in streamflow simulation and forecast
Stochastic Environmental Research and Risk Assessment, ISSN: 1436-3240, Vol: 25, Issue: 7, Page: 957-972
2011
- 22Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Among other sources of uncertainties in hydrologic modeling, input uncertainty due to a sparse station network was tested. The authors tested impact of uncertainty in daily precipitation on streamflow forecasts. In order to test the impact, a distributed hydrologic model (PRMS, Precipitation Runoff Modeling System) was used in two hydrologically different basins (Animas basin at Durango, Colorado and Alapaha basin at Statenville, Georgia) to generate ensemble streamflows. The uncertainty in model inputs was characterized using ensembles of daily precipitation, which were designed to preserve spatial and temporal correlations in the precipitation observations. Generated ensemble flows in the two test basins clearly showed fundamental differences in the impact of input uncertainty. The flow ensemble showed wider range in Alapaha basin than the Animas basin. The wider range of streamflow ensembles in Alapaha basin was caused by both greater spatial variance in precipitation and shorter time lags between rainfall and runoff in this rainfall dominated basin. This ensemble streamflow generation framework was also applied to demonstrate example forecasts that could improve traditional ESP (Ensemble Streamflow Prediction) method. © 2011 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80051808805&origin=inward; http://dx.doi.org/10.1007/s00477-011-0460-1; http://link.springer.com/10.1007/s00477-011-0460-1; https://dx.doi.org/10.1007/s00477-011-0460-1; https://link.springer.com/article/10.1007/s00477-011-0460-1; http://www.springerlink.com/index/10.1007/s00477-011-0460-1; http://www.springerlink.com/index/pdf/10.1007/s00477-011-0460-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know