Modelling the spatio-temporal repartition of right-truncated data: an application to avalanche runout altitudes in Hautes-Savoie
Stochastic Environmental Research and Risk Assessment, ISSN: 1436-3259, Vol: 31, Issue: 3, Page: 629-644
2017
- 9Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we propose a novel approach for generating avalanche hazard maps based on the spatial dependence of avalanche runout altitudes. The right-truncated data are described with a Bayesian hierarchical model in which the spatio-temporal process is assumed to be the sum of independent spatial and temporal terms. Topography is roughly taken into account according to valley altitude and path exposition, and the spatial dependence is modelled with a Matérn covariance function. An application is performed to the Haute-Savoie region, French Alps. A spatial dependence in runout altitudes is identified, and an effective range of about 10 km is inferred. The temporal trend extracted highlights the increase of avalanche runout altitudes from 1955, attributed to both anthropogenic factors and climate warming. In a cross validation scheme, spatial predictions are provided on undocumented paths using kriging equations. All in all, although our model is unable to take into account small topographic features, it is a first-ever approach that produces very encouraging results. It could be enhanced in future work by incorporating a numerical physically-based code into the modelling.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know