Complexity as a streamflow metric of hydrologic alteration
Stochastic Environmental Research and Risk Assessment, ISSN: 1436-3259, Vol: 31, Issue: 8, Page: 2107-2119
2017
- 20Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We explore the potential of using a complexity measure from statistical physics as a streamflow metric of basin-scale hydrologic alteration. The complexity measure that we employ is a non-trivial function of entropy. To determine entropy, we use the so-called permutation entropy (PE) approach. The PE approach is desirable in this case since it accounts for temporal streamflow information and it only requires a weak form of stationarity to be satisfied. To compute the complexity measure and assess hydrologic alteration, we employ daily streamflow records from 22 urban basins, located in the metropolitan areas of the cities of Baltimore, Philadelphia, and Washington DC, in the United States. We use urbanization to represent hydrologic alteration since urban basins are characterized by varied and often pronounced human impacts. Based on our application of the complexity measure to urban basins, we find that complexity tends to decline with increasing hydrologic alteration while entropy rises. According to this evidence, heavily urbanized basins tend to be temporally less complex (less ordered or structured) and more random than basins with low urbanization. This complexity loss may have important implications for stream ecosystems whose ability to provide ecosystem services depend on the flow regime. We also find that the complexity measure performs better in detecting alteration to the streamflow than more conventional metrics (e.g., variance and median of streamflow). We conclude that complexity is a useful streamflow metric for assessing basin-scale hydrologic alteration.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know