Elderly bioheat modeling: changes in physiology, thermoregulation, and blood flow circulation
International Journal of Biometeorology, ISSN: 0020-7128, Vol: 58, Issue: 9, Page: 1825-1843
2014
- 51Citations
- 82Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations51
- Citation Indexes51
- 51
- CrossRef12
- Captures82
- Readers82
- 82
Article Description
A bioheat model for the elderly was developed focusing on blood flow circulatory changes that influence their thermal response in warm and cold environments to predict skin and core temperatures for different segments of the body especially the fingers. The young adult model of Karaki et al. (Int J Therm Sci 67:41–51, 2013) was modified by incorporation of the physiological thermoregulatory and vasomotor changes based on literature observations of physiological changes in the elderly compared to young adults such as lower metabolism and vasoconstriction diminished ability, skin blood flow and its minimum and maximum values, the sweating values, skin fat thickness, as well as the change in threshold parameter related to core or skin temperatures which triggers thermoregulatory action for sweating, maximum dilatation, and maximum constriction. The developed model was validated with published experimental data for elderly exposure to transient and steady hot and cold environments. Predicted finger skin temperature, mean skin temperature, and core temperature were in agreement with published experimental data at a maximum error less than 0.5 °C in the mean skin temperature. The elderly bioheat model showed an increase in finger skin temperature and a decrease in core temperature in cold exposure while it showed a decrease in finger skin temperature and an increase in core temperature in hot exposure.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84892724796&origin=inward; http://dx.doi.org/10.1007/s00484-013-0785-1; http://www.ncbi.nlm.nih.gov/pubmed/24464496; http://link.springer.com/10.1007/s00484-013-0785-1; https://dx.doi.org/10.1007/s00484-013-0785-1; https://link.springer.com/article/10.1007/s00484-013-0785-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know