Estimating cucumber crop coefficients under different greenhouse microclimatic conditions
International Journal of Biometeorology, ISSN: 1432-1254, Vol: 67, Issue: 11, Page: 1745-1756
2023
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study aimed to determine cucumber crop coefficients under different greenhouse microclimatic conditions, parameterizing the Priestley-Taylor reference evapotranspiration model. Crop evapotranspiration was directly measured with the use of lysimeters, and crop coefficients were computed following the two-step climate FAO 56 methodology. Greenhouse compartments (i.e., cooled or uncooled) showed reference evapotranspiration differences of up to 12% in an autumn-winter crop. The results presented cucumber crop coefficient values from the initial to the late-season growth stages from 0.45 to 0.94 depending on the greenhouse climate. Based on the greenhouse hourly microclimatic variation of K, it is recommended not to apply a K as a constant for transpiration estimation even at greenhouses located within the same region Regression analysis relating crop coefficients with leaf area revealed very high correlation coefficients for the equations tested. The results indicated that evapotranspiration can be modeled satisfactory based on a significant relationship between crop coefficient and simple measurements of the leaf area index (i.e., K = 0.447 × LAI).
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171652936&origin=inward; http://dx.doi.org/10.1007/s00484-023-02535-y; http://www.ncbi.nlm.nih.gov/pubmed/37733234; https://link.springer.com/10.1007/s00484-023-02535-y; https://dx.doi.org/10.1007/s00484-023-02535-y; https://link.springer.com/article/10.1007/s00484-023-02535-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know