Automating fake news detection system using multi-level voting model
Soft Computing, ISSN: 1433-7479, Vol: 24, Issue: 12, Page: 9049-9069
2020
- 131Citations
- 234Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The issues of online fake news have attained an increasing eminence in the diffusion of shaping news stories online. Misleading or unreliable information in the form of videos, posts, articles, URLs is extensively disseminated through popular social media platforms such as Facebook and Twitter. As a result, editors and journalists are in need of new tools that can help them to pace up the verification process for the content that has been originated from social media. Motivated by the need for automated detection of fake news, the goal is to find out which classification model identifies phony features accurately using three feature extraction techniques, Term Frequency–Inverse Document Frequency (TF–IDF), Count-Vectorizer (CV) and Hashing-Vectorizer (HV). Also, in this paper, a novel multi-level voting ensemble model is proposed. The proposed system has been tested on three datasets using twelve classifiers. These ML classifiers are combined based on their false prediction ratio. It has been observed that the Passive Aggressive, Logistic Regression and Linear Support Vector Classifier (LinearSVC) individually perform best using TF-IDF, CV and HV feature extraction approaches, respectively, based on their performance metrics, whereas the proposed model outperforms the Passive Aggressive model by 0.8%, Logistic Regression model by 1.3%, LinearSVC model by 0.4% using TF-IDF, CV and HV, respectively. The proposed system can also be used to predict the fake content (textual form) from online social media websites.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know