PlumX Metrics
Embed PlumX Metrics

An information propagation model for social networks based on continuous-time quantum walk

Neural Computing and Applications, ISSN: 1433-3058, Vol: 34, Issue: 16, Page: 13455-13468
2022
  • 5
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Existing social network simulation models exhibit several limitations, including extensive iteration requirements and multiple control parameters. In this study, an information propagation model based on continuous-time quantum walk (CTQW-IPM) is introduced to rank crucial individuals in undirected social networks. In the proposed CTQW-IPM, arbitrary individuals (or groups) can be specified as initial diffusion dynamic elements through preset probability amplitudes. Information diffusion on a global reachable path is then simulated by an evolution operator, as individual degrees of cruciality are estimated from probability distributions acquired from quantum observations. CTQW-IPM does not require iterations, due to the non-randomness of CTQW, and does not include extensive computations as complex cascade diffusion processes are replaced by evolution operators. Experimental comparisons of CTQW-IPM and several conventional models showed their ranking of crucial individuals exhibited a strong correlation, with nearly every individual in the social network assigned a unique measured value based on the rate of distinguishability. CTQW-IPM also outperformed other algorithms in influence maximization problems, as measured by the resulting spread size.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know