Intelligent fault diagnosis of rolling bearings based on LSTM with large margin nearest neighbor algorithm
Neural Computing and Applications, ISSN: 1433-3058, Vol: 34, Issue: 22, Page: 19401-19421
2022
- 20Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In industrial machinery, rolling bearings are often rated as the most likely to fail in mechanical systems due to excessive working stress. Therefore, effective methods to diagnose the faults in rolling bearings are becoming necessary and required to ensure economic efficiency and manufacturing reliability. Recently, several studies tried to develop deep learning models for intelligent fault diagnosis based on traditional methods. However, creating an effective method for fault recognition is still a major obstacle due to varying operating conditions, large amount of collected data and redundant noise in measured vibration signals. Advanced signal processing techniques and traditional strategies often consist of shallow constructs that suffer from learning a huge amount of data, losing valuable fault information, yielding in low accuracy and labor time losses. In this paper, a combination method of long short-term memory with large margin nearest neighbor (LSTM-LMNN) is designed to address the above issues and effectively recognize multi-faults in mechanical rotating machines. Different from traditional LSTMs, the proposed LSTM-LMNN utilizes a powerful orthogonal weight initialization technique to memorize the critical information of faults during parameters updating and strongly organizing the samples of each condition in pattern classification process. Two experimental studies of bearing fault diagnosis demonstrate that the proposed LSTM-LMNN model outperformed other existing methods in terms of diagnostic efficiency, stability, and reliability.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know