Bernstein-Levy differential evolution algorithm for numerical function optimization
Neural Computing and Applications, ISSN: 1433-3058, Vol: 35, Issue: 9, Page: 6603-6621
2023
- 22Citations
- 11Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Researchers from Erciyes University Discuss Findings in Engineering (Bernstein-levy Differential Evolution Algorithm for Numerical Function Optimization)
2023 JAN 03 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- Researchers detail new data in Engineering. According to news
Article Description
Differential evolutionary (DE) algorithm is one of the most frequently used evolutionary computation method for the solution of non-differentiable, complex and discontinuous real value numerical problems. The analytical structure of the mutation and crossover operators used by DE and the initial values of the parameters of the relevant operators affect the problem-solving ability of DE. Unfortunately, there is no analytical method for selecting and initializing the best artificial genetic operators that DE can use to solve a problem. Therefore, there is a need to develop new evolutionary search methods that are parameter-free and insensitive to the artificial genetic operators they use. In this paper, the Bernstein–Levy differential evolution (BDE) algorithm, which has a unique elitist-mutation operator and a Bernstein polynomials-based stochastic parameter-free crossover operator, is introduced. The numerical problem-solving success of BDE is statistically evaluated by using 30 benchmark problems of CEC2014 in the numerical experiments presented. BDE's success in solving the related benchmark problems is statistically compared with six state-of-the-art comparison algorithms. In this paper, three real-world optimization problems are also solved by using the proposed algorithm, BDE. According to statistics generated from the experimental results, BDE is statistically better than comparison methods in solving the related real-world problems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know