Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles
Neural Computing and Applications, ISSN: 1433-3058, Vol: 35, Issue: 17, Page: 12453-12479
2023
- 170Citations
- 97Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The use of nano-materials to improve the engineering properties of different types of concrete composites including geopolymer concrete (GPC) has recently gained popularity. Numerous programs have been executed to investigate the mechanical properties of GPC. In general, compressive strength (CS) is an essential mechanical indicator for judging the quality of concrete. Traditional test methods for determining the CS of GPC are expensive, time-consuming and limiting due to the complicated interplay of a wide variety of mixing proportions and curing regimes. Therefore, in this study, artificial neural network (ANN), multi-expression programming, full quadratic, linear regression and M5P-tree machine learning techniques were used to predict the CS of GPC. In this instance, around 207 tested CS values were extracted from the literature and studied to promote the models. During the process of modeling, eleven effective variables were utilized as input model parameters, and one variable was utilized as an output. Four statistical indicators were used to judge how well the models worked, and the sensitivity analysis was carried out. According to the results, the ANN model calculated the CS of GPC with greater precision than the other models. On the other hand, the ratio of alkaline solution to the binder, molarity, NaOH content, curing temperature and concrete age have substantial effects on the CS of GPC.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know