A state-of-the-art survey of U-Net in microscopic image analysis: from simple usage to structure mortification
Neural Computing and Applications, ISSN: 1433-3058, Vol: 36, Issue: 7, Page: 3317-3346
2024
- 8Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Microscopic image analysis technology helps solve the inadvertences of artificial traditional methods in disease, wastewater treatment, and environmental change monitoring analysis. Convolutional neural network (CNN) play an important role in microscopic image analysis. Image segmentation, in which U-Net is increasingly applied in microscopic image segmentation, is a crucial step in detection, tracking, monitoring, feature extraction, modelling, and analysis. This paper comprehensively reviews the development history of U-Net, analyses several research results of various segmentation methods since the emergence of U-Net, and conducts a comprehensive review of related papers. This paper summarised the improved methods of U-Net and then listed the existing significance of image segmentation techniques and their improvements introduced over the years. Finally, focusing on the different improvement strategies of U-Net in different papers, the related work of each application target is reviewed according to detailed technical categories to facilitate future research. Researchers can see the dynamics of the transmission of technological development and keep up with future trends in this interdisciplinary field.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know