Evidential neural network for tensile stress uncertainty quantification in thermoplastic elastomers
Neural Computing and Applications, ISSN: 1433-3058, Vol: 36, Issue: 33, Page: 20687-20697
2024
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Article Description
This work presents the use of artificial neural networks (ANNs) with deep evidential regression to model the tensile stress response of a thermoplastic elastomer (TPE) considering uncertainty. Three Gaussian noise scenarios were added to a previous dataset of a TPE to simulate noise in the stress response. The trained ANN models were able to address stress–strain data that were not used for their training or validation, even in the presence of noise. The uncertainty in all tested ANN scenarios comprised, within ± 3σ, the noisy data of the TPE stress response. The method was extended to other grades of Hytrel material with ANN architectures that obtained results with a coefficient of determination of about 0.9. These results suggest that shallow neural networks, equipped and trained using evidential output layers and an evidential regression loss, can predict, generalize, and simulate noisy tensile stress responses in TPE materials.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know