Mass, center of mass and isoperimetry in asymptotically flat 3-manifolds
Calculus of Variations and Partial Differential Equations, ISSN: 1432-0835, Vol: 62, Issue: 7
2023
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
We revisit the interplay between the mass, the center of mass and the large scale behavior of certain isoperimetric quotients in the setting of asymptotically flat 3-manifolds (both without and with a non-compact boundary). In the boundaryless case, we first check that the isoperimetric deficits involving the total mean curvature recover the ADM mass in the asymptotic limit, thus extending a classical result due to G. Huisken. Next, under a Schwarzschild asymptotics and assuming that the mass is positive we indicate how the implicit function method pioneered by R. Ye and refined by L.-H. Huang may be adapted to establish the existence of a foliation of a neighborhood of infinity satisfying the corresponding curvature conditions. Recovering the mass as the asymptotic limit of the corresponding relative isoperimetric deficit also holds true in the presence of a non-compact boundary, where we additionally obtain, again under a Schwarzschild asymptotics, a foliation at infinity by free boundary constant mean curvature hemispheres, which are shown to be the unique relative isoperimetric surfaces for all sufficiently large enclosed volume, thus extending to this setting a celebrated result by M. Eichmair and J. Metzger. Also, in each case treated here we relate the geometric center of the foliation to the center of mass of the manifold as defined by Hamiltonian methods.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know