AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification
Multimedia Systems, ISSN: 1432-1882, Vol: 28, Issue: 4, Page: 1275-1288
2022
- 29Citations
- 50Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations29
- Citation Indexes29
- 29
- CrossRef26
- Captures50
- Readers50
- 50
Conference Paper Description
Classification of human emotions based on electroencephalography (EEG) is a very popular topic nowadays in the provision of human health care and well-being. Fast and effective emotion recognition can play an important role in understanding a patient’s emotions and in monitoring stress levels in real-time. Due to the noisy and non-linear nature of the EEG signal, it is still difficult to understand emotions and can generate large feature vectors. In this article, we have proposed an efficient spatial feature extraction and feature selection method with a short processing time. The raw EEG signal is first divided into a smaller set of eigenmode functions called (IMF) using the empirical model-based decomposition proposed in our work, known as intensive multivariate empirical mode decomposition (iMEMD). The Spatio-temporal analysis is performed with Complex Continuous Wavelet Transform (CCWT) to collect all the information in the time and frequency domains. The multiple model extraction method uses three deep neural networks (DNNs) to extract features and dissect them together to have a combined feature vector. To overcome the computational curse, we propose a method of differential entropy and mutual information, which further reduces feature size by selecting high-quality features and pooling the k-means results to produce less dimensional qualitative feature vectors. The system seems complex, but once the network is trained with this model, real-time application testing and validation with good classification performance is fast. The proposed method for selecting attributes for benchmarking is validated with two publicly available data sets, SEED, and DEAP. This method is less expensive to calculate than more modern sentiment recognition methods, provides real-time sentiment analysis, and offers good classification accuracy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85105012245&origin=inward; http://dx.doi.org/10.1007/s00530-021-00782-w; http://www.ncbi.nlm.nih.gov/pubmed/33897112; https://link.springer.com/10.1007/s00530-021-00782-w; https://dx.doi.org/10.1007/s00530-021-00782-w; https://link.springer.com/article/10.1007/s00530-021-00782-w
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know