Characterisation of the internal resonances of a clamped-clamped beam MEMS resonator
Microsystem Technologies, ISSN: 1432-1858, Vol: 26, Issue: 6, Page: 1987-2003
2020
- 19Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nonlinear coupling between modes through internal resonance has many applications in MEMS resonators. The primary objective of this work is to systematically study all possible internal resonance conditions between the first three modes and the feasibility of mode interaction in an electrostatically excited, straight, clamped-clamped beam. The static displacement and the first three natural frequencies of the beam are obtained for an applied DC voltage by using Galerkin based reduced order model and finite element method. All six possible commensurable relations between the first three frequencies of the beam are obtained by sweeping the non-dimensional parameters (α and α2Vdc2) which depend on beam dimensions, material properties and external forcing. It is also demonstrated by a further examination of the dynamical equations that only one resonance condition is capable of exhibiting modal coupling when externally excited. A detailed analysis is carried out for this feasible resonance condition by altering α and α2Vdc2 and solving the relevant nonlinear coupled equations by using both numerical time integration and the method of multiple scales. From this study, we observe that the lower mode is automatically excited after driving amplitude for the higher mode reaches a critical value—a sign of mode interaction initiation. We also find that amplitude of the higher mode is saturated after interaction with the lower mode for a combination of α and α2Vdc2. Moreover, we see that the frequency bandwidth of modal interaction increases with excitation amplitude for all combinations of α and α2Vdc2. Finally, the role of external damping on the amplitude-frequency response curve of both modes during the mode interaction is also investigated.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know