Compatible host/mycorrhizal fungus combinations for micropropagated sea oats: II. Field evaluation
Mycorrhiza, ISSN: 0940-6360, Vol: 18, Issue: 5, Page: 257-261
2008
- 12Citations
- 58Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Sea oats (Uniola paniculata L.) are the dominant plant in the pioneer coastal dunes of Florida and are widely used for dune restoration. DNA analysis has revealed significant ecotypic variation among Atlantic and Gulf coast populations of sea oats, but little is known about the diversity of the arbuscular mycorrhizal (AM) communities present in the dune systems. In a prior greenhouse study, we evaluated the functional diversity that exists among the AM fungal communities from divergent Florida dunes and selected effective host/AM fungus combinations for further study. The objective of this study was to evaluate the effect of these compatible combinations on the growth of sea oats planted at Anastasia State Recreation Area (AN) on the Atlantic coast and St. George Island State Park (SG) on the Gulf coast. Micropropagated sea oats from each site were inoculated with AM fungal communities also from AN and SG or a microbial filtrate control. The complete factorial of treatment combinations were grown in the greenhouse for 8 weeks and outplanted to the AN and SG field sites. After 1 year, root colonization was evaluated, and after 2 years, root colonization, shoot and root dry masses, and shoot- and root-P contents were determined. Overall, sea oats planted at AN had greater percent root colonization, shoot dry mass, and shoot-P content than those planted at SG. At AN, the local sea oat ecotype responded more to the fungal community from the same site relative to shoot dry mass and shoot-P content. At SG, the local fungal community produced larger plants with greater P content regardless of the origin of the host. We conclude that sea oat productivity is responsive to AM fungal ecotype as well as host ecotype, and fungal origin should therefore be taken into account when planning sea oat plantings on coastal dunes. © 2008 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=45849129760&origin=inward; http://dx.doi.org/10.1007/s00572-008-0178-1; http://www.ncbi.nlm.nih.gov/pubmed/18536940; http://link.springer.com/10.1007/s00572-008-0178-1; http://www.springerlink.com/index/10.1007/s00572-008-0178-1; http://www.springerlink.com/index/pdf/10.1007/s00572-008-0178-1; https://dx.doi.org/10.1007/s00572-008-0178-1; https://link.springer.com/article/10.1007/s00572-008-0178-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know