Sum Rules for the Gravitational Form Factors Using Light-Front Dressed Quark State
Few-Body Systems, ISSN: 1432-5411, Vol: 64, Issue: 3
2023
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
We consider a light-front dressed quark state, per se, instead of a proton state, we consider a simple composite spin-1/2 state of a quark dressed with a gluon. This perturbative model incorporates gluonic degrees of freedom, which enable us to evaluate the gravitational form factors (GFFs) of the quark as well as the gluon in this model (More et al. Phys Rev D 105(5):056017, 2022. arXiv:2112.06550 , https://doi.org/10.1103/PhysRevD.105.056017 ; Gluon contribution to the mechanical properties of a dressed quark in light-front Hamiltonian QCD, 2023. arXiv:2302.11906). We employ the Hamiltonian framework and choose the light-front gauge A= 0 . We calculate the four GFFs and corroborate the sum rules that GFFs satisfy. The GFF DD is attributed to information like pressure, shear, and energy distributions. We analyze some of these distributions for a dressed quark state at one loop in QCD.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know