Breakup Amplitudes from the Pseudostate Extension of the Coupled-Reaction-Channels Method
Few-Body Systems, ISSN: 1432-5411, Vol: 65, Issue: 1
2024
- 3Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
Article Description
A pseudochannel extension of the coupled-reaction-channel (CRC) ansatz had been used in earlier work to simulate the effect of the breakup channel on the rearrangement amplitudes. Comparisons with benchmark results on model systems established that rearrangement amplitudes and total breakup probability could be obtained accurately. However, achieving the same level of accuracy with respect to the state-to-state breakup amplitudes had eluded the earlier attempts that used global bases to generate the pseudo states. With the global bases it is difficult to control the spectrum of pseudostate energies and to obtain an optimal distribution of these pseudo-levels. In the present work, local bases in momentum space of the type used in Finite Element methods are employed. Pseudostates are generated using a local interpolation basis in the relative momentum of the two-body subsystem. Local nature of such a basis allows us to control the density of two-body pseudostates by simply adjusting the distribution of the grid points. In the present work, it is demonstrated that breakup amplitudes can be extracted quantitatively using pseudostates generated from a basis of local piecewise quadratic interpolation polynomials. For a local-potential s-wave model of the n+d scattering, state-to-state breakup amplitudes obtained from the present approach are compared with the benchmark results available in the literature. Results further confirm that pseudostate-extended CRC method is a viable and efficient approach for three-particle scattering.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know