Effects of Loading Rate on Rockburst Proneness of Granite from Energy Storage and Surplus Perspectives
Rock Mechanics and Rock Engineering, ISSN: 1434-453X, Vol: 55, Issue: 10, Page: 6495-6516
2022
- 23Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Rockburst is a kind of rock failure phenomenon during which the internal elastic strain energy of surrounding rock mass is released dynamically under external load, and the loading rate is an essential influencing factor of potential for bursting. To investigate the effects of loading rate on rockburst proneness from energy storage and surplus perspectives, conventional uniaxial compression tests are conducted on granite under four orders of magnitude loading rate. The failure process and mode of granite specimens were recorded in real time with a high-speed camera with microsecond shooting speed. The variation trend of the internal elastic strain energy of granite specimens under four loading rates was obtained by performing the single-cycle loading–unloading uniaxial compression test. The experimental results show that the elastic strain energy linearly increases as the input strain energy increases under each loading rate, which meet the linear energy storage law. Based on the linear energy storage law, the peak elastic strain energy of each granite specimen can be accurately obtained. According to the mass and range of ejected rock debris after specimen failure, the bursting liability of each specimen was evaluated by the far-field ejection mass ratio (M) from a qualitative point of view. Meanwhile, the residual elastic energy index (A) and the other three criteria were used to evaluate the potential for bursting of granite specimens under different loading rates. The comparison results show the rockburst proneness of granite specimens increases with the loading rate and that the evaluation results of M and A are unified from qualitative and quantitative aspects, respectively. The fundamental reason for the consistent results is that these two indexes have a common essence of elastic strain energy release.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know