Three-dimensional Modeling of Cracking with Thermo-hydromechanical Process by Considering Rock Heterogeneity
Rock Mechanics and Rock Engineering, ISSN: 1434-453X, Vol: 57, Issue: 6, Page: 4367-4388
2024
- 9Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study is part of numerical simulations performed on an in-situ heating test conducted by the French National Radioactive Waste Management Agency (Andra) at the Meuse/Haute-Marne Underground Research Laboratory (URL) to study the thermo-hydromechanical behavior of the host Callovo-Oxfordian COx claystone in quasi real conditions, through the international research project DECOVALEX. We present a numerical study of damage and cracking process in saturated claystone subjected to thermo-hydromechanical coupling by considering material heterogeneity distribution. For this purpose, a macroscopic elastic model is first determined by using two steps of homogenization by taking into account the effects of porosity and mineral inclusions. This model is implemented into a finite element code devoted to solving thermo-hydromechanical coupling problems. The nucleation and propagation of cracks are described by using an extended phase-field method, considering the effects of temperature and fluid pressure on the evolution of phase-field. The proposed model is applied to the numerical analysis of cracking process due to excavation and heating around a group of boreholes (CRQ). The numerical results of the 3D simulation are compared with in-situ measurements of temperature and pore pressure distribution. The excavation damage zone and heating fracture is reproduced and analysed according to the structure of the heating position and the heterogeneity of the rock.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know