The Analysis of the Fracturing Mechanism and Brittleness Characteristics of Anisotropic Shale Based on Finite-Discrete Element Method
Rock Mechanics and Rock Engineering, ISSN: 1434-453X, Vol: 57, Issue: 4, Page: 2385-2405
2024
- 2Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Shale anisotropy characteristics have great effects on the mechanical behaviour of the rock. Understanding shale anisotropic behaviour is one of the key interests to several geo-engineering fields, including tunnel, nuclear waste disposal and hydraulic fracturing. This research adopted the finite discrete element method (FDEM) to create anisotropic shale models in ABAQUS. The FDEM models were calibrated using the mechanical values obtained from published laboratory tests on Longmaxi shale. The results show that the anisotropic features of shale significantly affect the brittleness and fracturing mechanism at the micro-crack level. The total fracture number in shale under the Uniaxial Compressive Strength (UCS) test is not only related to the brittleness of shale. It is also strongly dependent on the structure of the shale, which is sensitive to shale anisotropy. Two new brittleness indices, BI and BI, have been proposed in this paper. The expression for BI directly incorporates the number of fractures formed inside of the rock, which provides a more accurate frac-ability using this brittleness index. It can be used to calculate the frac-ability of rocks in projects where there are concerns about fractures after excavation. Meanwhile, BI links brittleness to the CD/UCS ratio in shale for the first time. BI is easy to obtain in comparison to other brittleness indices because it is based on the Uniaxial Compressive Strength test only. In addition, it has been shown there is a relationship between tensile strength and the crack damage strength in shale. Based on this, an empirical relationship has been proposed to predict the tensile strength based on the Uniaxial Compressive Strength test.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know