Magnetic solid phase extraction of N- and S-containing polycyclic aromatic hydrocarbons at ppb levels by using a zerovalent iron nanoscale material modified with a metal organic framework of type Fe@MOF-5, and their determination by HPLC
Microchimica Acta, ISSN: 1436-5073, Vol: 184, Issue: 4, Page: 1029-1036
2017
- 41Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Metal organic frameworks of type MOF-5 exhibit good adsorption capacity for many organic compounds. The authors have used nanoscale silica-coated zerovalent iron and MOF-5 to prepare, by co-precipitation, a novel magnetic nanomaterial of type Fe@MOF-5. Its morphology and structure were characterized by transmission electron microscopy and X-ray diffraction. The nanomaterial is shown to be well suited for magnetic solid phase extraction for five kinds of N- and S-containing polycyclic aromatic hydrocarbons prior to quantitation by HPLC. The limits of detection are in the 25 to 33 ng⋅L concentration range. Four real water samples were used to validate the method, and the recoveries of spiked samples with concentrations of 5 and 10 ppb were found to be in the range between 92.6 and 97.3% (n = 3). The Fe@MOF-5 sorbent obviously has excellent adsorption capability for such compounds, can be fairly easily synthesized, displays sensitivity, simplicity, ease of operation, and can be prepared at low costs. In our perception, it has a large potential in terms of monitoring such environmental pollutants. [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85011661293&origin=inward; http://dx.doi.org/10.1007/s00604-017-2094-6; http://link.springer.com/10.1007/s00604-017-2094-6; http://link.springer.com/content/pdf/10.1007/s00604-017-2094-6.pdf; http://link.springer.com/article/10.1007/s00604-017-2094-6/fulltext.html; https://dx.doi.org/10.1007/s00604-017-2094-6; https://link.springer.com/article/10.1007/s00604-017-2094-6
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know