PlumX Metrics
Embed PlumX Metrics

Space-confined synthesis of ordered mesoporous carbon doped with single-layer MoS–boron for the voltammetric determination of theophylline

Microchimica Acta, ISSN: 1436-5073, Vol: 186, Issue: 11, Page: 694
2019
  • 13
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    13
    • Citation Indexes
      13
  • Captures
    7

Article Description

A space-confined synthesis method is employed for the preparation of a single-layer MoS–boron doped ordered mesoporous carbon nanocomposite. A phenol-formaldehyde resin is used as carbon source to create a confined space for the formation of single-layer MoS. The addition of pluronic F127, as a soft template, suppresses the stacking of MoS layers and makes the composite porous. The nanocomposite is characterized by scanning electron and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The single-layer MoS sheets have a lateral size of about 5 nm and are uniformly embedded in the composite. They possess numerous active edge sites and display a strong synergistic effect with other components. The composite is modified on a glassy carbon electrode, followed by the electrochemical imprinting of theophylline, and the resulting electrode exhibits good electrochemical response to theophylline. The linear response range is 0.01–250 μM by differential pulse voltammetry, and the lower detection limit is 5 nM. It has been successfully applied to the determination of theophylline in spiked tea drink samples.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know