Detection of chloramphenicol with an aptamer-based colorimetric assay: critical evaluation of specific and unspecific binding of analyte molecules
Microchimica Acta, ISSN: 1436-5073, Vol: 187, Issue: 12, Page: 668
2020
- 39Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations39
- Citation Indexes39
- 39
- Captures29
- Readers29
- 29
Article Description
A chloramphenicol (CAP)-binding aptamer of 80 nucleotides (nt) was reported in 2011. In 2014, it was truncated to 40 nt and has since been used by most researchers, although a careful binding study is still lacking. In this work, binding assays using isothermal titration calorimetry and various DNA-staining dyes were performed. By comparing the truncated aptamer with three control sequences, no specific binding of CAP was observed in each case. The secondary structures of the original and truncated aptamers were analyzed, and it was shown that the likelihood of the truncated aptamer to retain the same binding mechanism as the original sequence is low. We further examined gold nanoparticle (AuNP)–based label-free colorimetric assays. By quantifying the extinction ratio at 620 nm over that at 520 nm, a similar color response was observed regardless of the sequence of DNA, suggesting the color change mainly reflected other events such as the adsorption of CAP by the AuNPs, instead of aptamer binding to CAP. Salt-induced aggregation experiments suggested direct adsorption of CAP on AuNPs. CAP only weakly inhibited DNA adsorption by AuNPs but did not displace pre-adsorbed DNA. Therefore, CAP adsorption by AuNPs needs to be considered when designing related sensors, for example, by using non-aptamer sequences as controls. This work calls for careful confirmation of aptamer binding and control experiments for designing aptamer and AuNP-based biosensors.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85096328962&origin=inward; http://dx.doi.org/10.1007/s00604-020-04644-6; http://www.ncbi.nlm.nih.gov/pubmed/33215333; http://link.springer.com/10.1007/s00604-020-04644-6; https://dx.doi.org/10.1007/s00604-020-04644-6; https://link.springer.com/article/10.1007/s00604-020-04644-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know