A sensitive electrochemical sensor for glutathione based on specific recognition induced collapse of silver-contained metal organic frameworks
Microchimica Acta, ISSN: 1436-5073, Vol: 191, Issue: 1, Page: 49
2024
- 6Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
An electrochemical sensor capable of detecting glutathione (GSH) with high sensitivity and selectivity was developed based on the unique novel electroactive silver-based metal organic framework (Ag-MOF). The Ag-MOF obtained by silver nitrate and 1,3,5-benzoic acid (HBTC) was thoroughly characterized and was modified onto the electrode via facile drop-casting method. The electrochemical response of GSH on the Ag-MOF modified electrode showed a significant reduction in the current signal because the Ag-GSH complex had stronger specific affinity than Ag-HBTC and resulted in the collapse of the Ag-MOF. This sensor demonstrated an extensive linear dynamic range of 0.1 nM-1 µM, along with the low detection limit of 0.018 nM. Additionally, it exhibited good reproducibility, stability, and resistance to interfering compounds. The Ag-MOF modified electrode demonstrated superior performance attributed to its rapid electron transfer rate, outstanding electrochemical redox activity, and specific recognition/competitive reaction. These factors improved both sensitivity and selectivity. The high anti-interference ability allowed for the selective detection of GSH in intricate surroundings. In the real sample testing, the RSD was lower than 3.1% and the recovery was between 98.1 and 103%. This research highlights the potential of Ag-MOFs in developing electrochemical sensors and their promising applications in determining GSH for food screening and early disease diagnosis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180363313&origin=inward; http://dx.doi.org/10.1007/s00604-023-06152-9; http://www.ncbi.nlm.nih.gov/pubmed/38141093; https://link.springer.com/10.1007/s00604-023-06152-9; https://dx.doi.org/10.1007/s00604-023-06152-9; https://link.springer.com/article/10.1007/s00604-023-06152-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know