Research progress on the detection of foodborne pathogens based on aptamer recognition
Microchimica Acta, ISSN: 1436-5073, Vol: 191, Issue: 6, Page: 318
2024
- 8Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Foodborne diseases caused by bacterial contamination are a serious threat to food safety and human health. The classical plate culture method has the problems of long detection cycle, low sensitivity and specificity, and complicated operation, which cannot meet the growing demand for rapid quantitative detection of pathogenic bacteria. The frequent outbreak of foodborne diseases has put forward higher requirements for rapid and simple detection technology of foodborne pathogens. Aptamer is a kind of oligonucleotide fragment that can recognize targets with the advantages of high affinity and good specificity. The target can be range from proteins, small molecules, cells bacteria, and even viruses. Herein, the latest advances in sensitive and rapid detection of foodborne pathogens based on aptamer recognition was reviewed. Special attention has been paid to the obtained sequences of aptamers to various foodborne pathogens, the optimization of sequences, and the mechanism of aptamer recognition. Then, the research progress of biosensors for the detection of pathogenic bacteria based on aptamer recognition were summarized. Some challenges and prospects for the detection of foodborne pathogens based on aptamer recognition were prospected. In summary, with the further deepening of aptamer research and improvement of detection technology, aptamer-based recognition can meet the needs of rapid, sensitive, and accurate detection in practical applications. Graphical Abstract: (Figure presented.)
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192539724&origin=inward; http://dx.doi.org/10.1007/s00604-024-06375-4; http://www.ncbi.nlm.nih.gov/pubmed/38727855; https://link.springer.com/10.1007/s00604-024-06375-4; https://dx.doi.org/10.1007/s00604-024-06375-4; https://link.springer.com/article/10.1007/s00604-024-06375-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know