Korovkin-type theorems on B(H) and their applications to function spaces
Monatshefte fur Mathematik, ISSN: 0026-9255, Vol: 197, Issue: 2, Page: 257-284
2022
- 3Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We prove Korovkin-type theorems in the setting of infinite dimensional Hilbert space operators. The classical Korovkin theorem unified several approximation processes. Also, the non-commutative versions of the theorem were obtained in various settings such as Banach algebras, C-algebras and lattices etc. The Korovkin-type theorem in the context of preconditioning large linear systems with Toeplitz structure can be found in the recent literature. In this article, we obtain a Korovkin-type theorem on B(H) which generalizes all such results in the recent literature. As an application of this result, we obtain Korovkin-type approximation for Toeplitz operators acting on various function spaces including Bergman space A(D) , Fock space F(C) etc. These results are closely related to the preconditioning problem for operator equations with Toeplitz structure on the unit disk D and on the whole complex plane C. It is worthwhile to notice that so far such results are available for Toeplitz operators on circle only. This also establishes the role of Korovkin-type approximation techniques on function spaces with certain oscillation property. To address the function theoretic questions using these operator theory tools will be an interesting area of further research.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know