Orientation aware weapons detection in visual data: a benchmark dataset
Computing, ISSN: 1436-5057, Vol: 104, Issue: 12, Page: 2581-2604
2022
- 3Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Automatic detection of weapons is significant for improving security and well being of individuals, nonetheless, it is a difficult task due to large variety of size, shape and appearance of weapons. View point variations and occlusion also are reasons which makes this task more difficult. Further, the current object detection algorithms process rectangular areas, however a slender and long rifle may really cover just a little portion of area and the rest may contain unessential details. To overcome these problem, we propose a CNN architecture for Orientation Aware Weapons Detection, which provides oriented bounding box with improved weapons detection performance. The proposed model provides orientation not only using angle as classification problem by dividing angle into eight classes but also angle as regression problem. For training our model for weapon detection a new dataset comprising of total 7801 weapons images is gathered from the web and then manually annotated with position oriented bounding boxes. Our dataset provides not only oriented bounding box as ground truth but also horizontal bounding box. We also provide our dataset in multiple formats of modern object detectors for further research in this area. The proposed model is evaluated on this dataset, and the comparative analysis with off-the shelf object detectors yields superior performance of proposed model, measured with standard evaluation strategies. The dataset and the model implementation are made publicly available at this link: https://bit.ly/2TyZICF.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know