An efficient ranking-based ensembled multiclassifier for neurodegenerative diseases classification using deep learning
Journal of Neural Transmission, ISSN: 1435-1463, Vol: 132, Issue: 1, Page: 67-93
2024
- 19Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures19
- Readers19
- 19
- Mentions1
- News Mentions1
- 1
Most Recent News
An efficient ranking-based ensembled multiclassifier for neurodegenerative diseases classification using deep learning.
J Neural Transm (Vienna). 2024 Sep 9; Authors: Goyal P, Rani R, Singh K PubMed: 39249515 Submit Comment
Article Description
Neurodegenerative diseases are group of debilitating and progressive disorders that primarily affect the structure and functions of nervous system, leading to gradual loss of neurons and subsequent decline in cognitive, and behavioral activities. The two frequent diseases affecting the world’s significant population falling in the above category are Alzheimer’s disease (AD) and Parkinson’s disease (PD). These disorders substantially impact the quality of life and burden healthcare systems and society. The demographic characteristics, and machine learning approaches have now been employed to diagnose these illnesses; however, they possess accuracy limitations. Therefore, the authors have developed ranking-based ensemble approach based on the weighted strategy of deep learning classifiers. The whole modeling procedure of the proposed approach incorporates three phases. In phase I, preprocessing techniques are applied to clean the noise in datasets to make it standardized according to deep learning models as it significantly impacts their performance. In phase II, five deep learning models are selected for classification and calculation of prediction results. In phase III, a ranking-based ensemble approach is proposed to ensemble the results of the five models after calculating the ranks and weights of them. In addition, the Magnetic Resonance Imaging (MRI) datasets named Alzheimer’s Disease Neuroimaging Initiative (ADNI) for AD classification and Parkinson’s Progressive Marker Initiative (PPMI) for PD classification are selected to validate the proposed approach. Furthermore, the proposed method achieved the classification accuracy on AD- Cognitive Normals (CN) at 97.89%, AD- Mild Cognitive Impairment (MCI) at 99.33% and CN-MCI at 99.44% and on PD-CN at 99.22%, PD- Scans Without Evidence of Dopaminergic Effect (SWEDD) at 97.56% and CN-SWEDD at 98.22% respectively. Also, the multi-class classification shows the promising accuracy of 97.18% for AD and 97.85% for PD for the proposed framework. The findings of the study show that the proposed deep learning-based ensemble technique is competitive for AD and PD prediction in both multiclass and binary class classification. Furthermore, the proposed approach enhances generalization performance in diagnosing neurodegenerative diseases and performs better than existing approaches.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203434726&origin=inward; http://dx.doi.org/10.1007/s00702-024-02830-x; http://www.ncbi.nlm.nih.gov/pubmed/39249515; https://link.springer.com/10.1007/s00702-024-02830-x; https://dx.doi.org/10.1007/s00702-024-02830-x; https://link.springer.com/article/10.1007/s00702-024-02830-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know