Uncertainty assessments of climate change projections over South America
Theoretical and Applied Climatology, ISSN: 1434-4483, Vol: 112, Issue: 1-2, Page: 253-272
2013
- 59Citations
- 89Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper assesses the uncertainties involved in the projections of seasonal temperature and precipitation changes over South America in the twenty-first century. Climate simulations generated by 24 general circulation models are weighted according to the reliability ensemble averaging (REA) approach. The results show that the REA mean temperature change is slightly smaller over South America compared to the simple ensemble mean. Higher reliability in the temperature projections is found over the La Plata basin, and a larger uncertainty range is located in the Amazon. A temperature increase exceeding 2 °C is found to have a very likely (>90 %) probability of occurrence for the entire South American continent in all seasons, and a more likely than not (>50 %) probability of exceeding 4 °C by the end of this century is found over northwest South America, the Amazon Basin, and Northeast Brazil. For precipitation, the projected changes have the same magnitude as the uncertainty range and are comparable to natural variability. © 2012 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84875375283&origin=inward; http://dx.doi.org/10.1007/s00704-012-0718-7; http://link.springer.com/10.1007/s00704-012-0718-7; http://link.springer.com/content/pdf/10.1007/s00704-012-0718-7; http://link.springer.com/content/pdf/10.1007/s00704-012-0718-7.pdf; http://link.springer.com/article/10.1007/s00704-012-0718-7/fulltext.html; https://dx.doi.org/10.1007/s00704-012-0718-7; https://link.springer.com/article/10.1007/s00704-012-0718-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know