Meteorological drought duration–severity and climate change impact in Iran
Theoretical and Applied Climatology, ISSN: 1434-4483, Vol: 149, Issue: 3-4, Page: 1297-1315
2022
- 8Citations
- 14Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Skeptical Science New Research for Week #23 2022
Terms and conditions may change For myriad reasons we'd like to think and know that dumping our outmoded and dangerous fossil fuel energy sources may be difficult and may require a lot of investment but that when we're done, we'll be back to business as usual in terms of what we expect to pay for the energy to do useful work. However, our expectations are quite arguably warped by our good fortune;
Article Description
This study investigated the effect of climate change on future precipitation and temperature from 2021 to 2050. Three general circulation models (GCMs), namely GFDL-ESM2M, HadGEM2-ES, and IPSL-CM5A-LR, and two greenhouse emission scenarios, RCP2.6 and RCP8.5, were analyzed for this purpose. The CCT model, precipitation data, and minimum and maximum daily temperatures (from 1986 to 2019) were used for downscaling and correcting precipitation and daily temperature bias. According to the results, the weighted annual precipitation recorded in rain-gauge stations was ascending in all scenarios, except for RCP8.5 in the IPSL-CM5A-LR model. The mean weighted precipitation rate of rain-gauge stations in winter did not descend under any climate change conditions, but the precipitation rate decreased or increased in other seasons. The highest increase of 23 mm in the weighted mean precipitation in winter was calculated under the RCP2.6 scenario in the GFDL-ESM2M model. The highest decrease of 10.5 mm in the weighted mean precipitation was observed in autumn. No temperature decline occurred in meteorological stations. The highest increase of 3.1 °C in the weighted mean temperature and the highest seasonal temperature rise of 8.5 °C were observed in summer under the RCP8.5 scenario in the HadGEM2-ES model. According to the standardized precipitation index (SPI), almost 70% of the future 30-year period are dry years, and drought occurs in almost all scenarios in all Iranian watersheds from 2030 to 2040. Given severe long droughts (14 years), Iran needs a comprehensive management plan and a long-term vision of managers and authorities for water resources.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know