Vibrations attenuation of a Jeffcott rotor by application of a new mathematical model of a magnetorheological squeeze film damper based on a bilinear oil representation
Acta Mechanica, ISSN: 0001-5970, Vol: 230, Issue: 5, Page: 1625-1640
2019
- 15Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A frequently used technological solution for reducing oscillations of rotors excited by imbalance, time-varying forces or ground vibrations consists in inserting damping devices in the rotor supports. To achieve their optimum performance in a wide range of operating speeds their damping effect must be controllable to be possible to adapt it to the current working conditions. This is enabled by application of magnetorheological squeeze film dampers. In mathematical models the magnetorheological oils are represented mostly by Bingham or Herschel–Bulkley theoretical materials. Recent experimental measurements carried out at several working places show that with respect to the shape of the flow curves obtained for different magnitudes of magnetic induction the real magnetorheological fluids behave like a bilinear material. This enables a more accurate implementation of magnetorheological fluids in mathematical models of squeeze film dampers. In addition, unlike the Bingham fluid the flow curve of a bilinear material is continuous which reduces the nonlinear character of the procedures for calculation of the hydraulic forces by which the oil film acts on the shaft journal and the rotor casing. A new developed mathematical model of a short magnetorheological squeeze film damper based on representing the lubricating oil by bilinear material was implemented in the computational procedures for analysis of the steady state response of a Jeffcott rotor loaded by a stationary force and by the weight and imbalance of the disc. The performed computational simulations proved that these procedures were numerically stable and arrived at the solution also in cases when the methods based on representing the magnetorheological oil by Bingham material failed.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85059855832&origin=inward; http://dx.doi.org/10.1007/s00707-018-2343-8; http://link.springer.com/10.1007/s00707-018-2343-8; http://link.springer.com/content/pdf/10.1007/s00707-018-2343-8.pdf; http://link.springer.com/article/10.1007/s00707-018-2343-8/fulltext.html; https://dx.doi.org/10.1007/s00707-018-2343-8; https://link.springer.com/article/10.1007/s00707-018-2343-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know