Energy-based nonlinear dynamical modeling of dielectric elastomer transducer systems suspended by elastic structures
Acta Mechanica, ISSN: 1619-6937, Vol: 234, Issue: 1, Page: 239-260
2023
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
This paper presents the Hamilton principle approach to model, design and control mechatronic systems using dielectric elastomer transducers (DET) suspended with elastic structures. An overall dynamical modeling approach for dielectric elastomer-based actuators is presented, taking into account the dynamical effects, e.g., electrical input quantities, inertia, viscous effects, and the nonlinear behavior of DETs and elastic structures. Energy-based techniques are used to obtain a coherent modeling of the electrical and mechanical domains. Based on the variational principle and using the Rayleigh–Ritz method to approximate the field variable, a nonlinear state space model is derived considering various geometric deformations and boundary conditions. The presented approach leads to a set of ordinary differential equations that can be used for control and engineering applications. The proposed method is finally applied to a multilayer DET coupled with a nonlinear buckled beam structure and analyzed based on analytical considerations and numerical simulations.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know