Optimization Methods for the Design of Sensitive Surface ESR Resonators
Applied Magnetic Resonance, ISSN: 0937-9347, Vol: 48, Issue: 11-12, Page: 1249-1262
2017
- 3Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Electron spin resonance (ESR) is a powerful spectroscopic technique that has many applications in a wide variety of scientific fields, including chemistry, biology, materials science, and physics. One significant drawback of conventional ESR, however, is its relatively low sensitivity compared to other spectroscopic techniques. Arguably, the most dominant element affecting ESR sensitivity is the microwave resonator used to pick up the ESR signal of the spins. Traditionally, ESR mostly employs a limited set of resonator configurations (e.g., rectangular cavity, dielectric, or loop-gap resonator) that are suboptimal with respect to a wide range of samples. In principle, a smart resonator design can be used to optimize spin sensitivity for a given sample’s properties. In this work, we make use of an efficient Genetic Algorithm (GA) approach to numerically solve, analyze, and optimize a unique class of surface microresonators. The GA is based on a method of moments code, customized directly to render the complexity of a particular resonator’s geometries in our search. The main purposes of the algorithm are to routinely generate more sensitive microresonators, optimized for a predefined sample’s dimensions, and to study the functional relations between the devices’ resonance frequency, quality, and filling factors and their topology, in order to reach a rational optimal design. Preliminary results associated with new, unique, and sensitive surface microresonators are shown and analyzed. Such resonators are cheap and easy to produce on a mass scale with an arbitrary surface geometry.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85028878835&origin=inward; http://dx.doi.org/10.1007/s00723-017-0941-6; http://link.springer.com/10.1007/s00723-017-0941-6; http://link.springer.com/content/pdf/10.1007/s00723-017-0941-6.pdf; http://link.springer.com/article/10.1007/s00723-017-0941-6/fulltext.html; https://dx.doi.org/10.1007/s00723-017-0941-6; https://link.springer.com/article/10.1007/s00723-017-0941-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know