Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: A computational approach
Journal of Biological Inorganic Chemistry, ISSN: 0949-8257, Vol: 17, Issue: 4, Page: 543-555
2012
- 26Citations
- 44Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations26
- Citation Indexes26
- 26
- CrossRef24
- Captures44
- Readers44
- 44
Article Description
Hydrogenases are metalloenzymes that catalyze the reversible reaction H22H+ + 2e, being potentially useful in H2 production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O2 inhibition and produce more H2 than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H2 diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H2 and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H2 diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H2 density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H2 to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H2 and proton pathways © SBIC 2012.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84862511693&origin=inward; http://dx.doi.org/10.1007/s00775-012-0875-2; http://www.ncbi.nlm.nih.gov/pubmed/22286956; http://link.springer.com/10.1007/s00775-012-0875-2; https://dx.doi.org/10.1007/s00775-012-0875-2; https://link.springer.com/article/10.1007/s00775-012-0875-2; http://www.springerlink.com/index/10.1007/s00775-012-0875-2; http://www.springerlink.com/index/pdf/10.1007/s00775-012-0875-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know