Efficient processing of moving collective spatial keyword queries
VLDB Journal, ISSN: 0949-877X, Vol: 29, Issue: 4, Page: 841-865
2020
- 22Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As a major type of continuous spatial queries, the moving spatial keyword queries have been studied extensively. Most existing studies focus on retrieving single objects, each of which is close to the query object and relevant to the query keywords. Nevertheless, a single object may not satisfy all the needs of a user, e.g., a user who is driving may want to withdraw money, wash her car, and buy some medicine, which could only be satisfied by multiple objects. We thereby formulate a new type of queries named the moving collective spatial keyword query (MCSKQ). This type of queries continuously reports a set of objects that collectively cover the query keywords as the query moves. Meanwhile, the returned objects must also be close to the query object and close to each other. Computing the exact result set is an NP-hard problem. To reduce the query processing costs, we propose algorithms, based on safe region techniques, to maintain the exact result set while the query object is moving. We further propose two approximate algorithms to obtain even higher query efficiency with precision bounds. All the proposed algorithms are also applicable to MCSKQ with weighted objects and MCSKQ in the domain of road networks. We verify the effectiveness and efficiency of the proposed algorithms both theoretically and empirically, and the results confirm the superiority of the proposed algorithms over the baseline algorithms.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know