Urban traffic accident risk prediction for knowledge-based mobile multimedia service
Personal and Ubiquitous Computing, ISSN: 1617-4917, Vol: 26, Issue: 2, Page: 417-427
2022
- 14Citations
- 44Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Traditional accident prediction models have been mostly designed with statistical analysis that finds and analyzes the causal relationships between traffic accidents and a variety of human, road geometry, and environmental factors. However, these statistical methods have limitations in that they are based on assumptions about data distribution and function type. Therefore, this study suggests an accident prediction model using deep learning. This newly suggested risk prediction model is for predicting risk by reflecting static features of the road, such its length and the speed limit on it, and dynamic features of the road, such as traffic volume when driving on it, and the altitude and azimuth of the sun. For this purpose, 4470 accident cases, collected over 5 months from August to December 2018 in Seoul—the most complex, high-traffic, and accident-prone city in Korea—were analyzed. As a result of testing the model using such data, it was found to have an accuracy of 75% and recall of 81%. Based on testing results for the suggested risk prediction model, a system was developed to guide not only accident-prone regions predicted using statistical data but to also guide a risk level for the road. This level of risk is estimated based upon each given situation, so it can change even for the same road. This guide system can be used to provide a level of risk for each road segment and region but also to improve roads with recommendations, such as installation of safety features. In addition, it could support a mobile system that provides a driver with the optimized driving path for safety.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know