PlumX Metrics
Embed PlumX Metrics

Metagenomic insights into the fungal assemblages of the northwest Himalayan cold desert

Extremophiles, ISSN: 1433-4909, Vol: 24, Issue: 5, Page: 749-758
2020
  • 6
    Citations
  • 0
    Usage
  • 22
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Psychrophilic fungi are a critical biotic component in cold deserts that serves a central role in nutrient recycling and biogeochemical cycles. Despite their ecological significance, culture-independent studies on psychrophilic mycobiome are limited. In the present study, the fungal diversity patterns across the Drass, an Indian cold desert in the Himalaya, were indexed by targeted amplicon pyrosequencing (ITS). In the Drass dataset, Ascomycota was represented by 92 genera, while 22 genera represented Basidiomycota. The most abundant genus was Conocybe (20.46%). Most of the identified genera were reported in the literature to be prolific extracellular hydrolytic enzyme producers. To identify whether the Drass fungal assemblages share similarities to other cold deserts, these were further compared to Antarctic and Arctic cold deserts. Comparative analysis across the three cold deserts indicated the dominance of Dikarya (Ascomycota and Basidiomycota). The observed alpha diversity, Shannon index as well as Pielou's evenness was highest in the Antarctic followed by Drass and Arctic datasets. The genera Malassezia, Preussia, Pseudogymnoascus, Cadophora, Geopora, Monodictys, Tetracladium, Titaea, Mortierella, and Cladosporium were common to all the cold deserts. Furthermore, Conocybe was represented predominantly in Drass. Interestingly, the genus Conocybe has not been previously reported from any other studies on Antarctic or Arctic biomes. To the best of our knowledge, this is the first fungal metagenome study in Drass soil. Our analysis shows that despite the similarities of low temperature among the cold deserts, a significant differential abundance of fungal communities prevails in the global cold deserts.

Bibliographic Details

Gupta, Puja; Vakhlu, Jyoti; Sharma, Yash Pal; Imchen, Madangchanok; Kumavath, Ranjith

Springer Science and Business Media LLC

Immunology and Microbiology; Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know