Computational evaluation of factors governing catalytic 2-keto acid decarboxylation
Journal of Molecular Modeling, ISSN: 0948-5023, Vol: 20, Issue: 6, Page: 2310
2014
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Recent advances in computational approaches for creating pathways for novel biochemical reactions has motivated the development of approaches for identifying enzyme-substrate pairs that are attractive candidates for effecting catalysis. We present an improved structural-based strategy to probe and study enzyme-substrate binding based on binding geometry, energy, and molecule characteristics, which allows for in silico screening of structural features that imbue higher catalytic potential with specific substrates. The strategy is demonstrated using 2-keto acid decarboxylation with various pairs of 2-keto acids and enzymes. We show that this approach fitted experimental values for a wide range of 2-keto acid decarboxylases for different 2-keto acid substrates. In addition, we show that the structure-based methods can be used to select specific enzymes that may be promising candidates to catalyze decarboxylation of certain 2-keto acids. The key features and principles of the candidate enzymes evaluated by the strategy can be used to design novel biosynthesis pathways, to guide enzymatic mutation or to guide biomimetic catalyst design. © Springer-Verlag 2014.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84901879398&origin=inward; http://dx.doi.org/10.1007/s00894-014-2310-9; http://www.ncbi.nlm.nih.gov/pubmed/24912593; http://link.springer.com/10.1007/s00894-014-2310-9; https://dx.doi.org/10.1007/s00894-014-2310-9; https://link.springer.com/article/10.1007/s00894-014-2310-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know