PlumX Metrics
Embed PlumX Metrics

Influence of microhydration on the structures and proton-induced charge transfer in RNA intermediates

Journal of Molecular Modeling, ISSN: 0948-5023, Vol: 22, Issue: 11, Page: 262
2016
  • 6
    Citations
  • 0
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    6
    • Citation Indexes
      6
  • Captures
    12

Article Description

Solvation effects are of major interest in the context of radiation damage, due to their potential applications in cancer therapy. Reliable modeling of the solvent is, however, quite challenging, and numerous studies have been devoted to isolated biomolecules and stepwise-hydrated molecules in which the amount of solvent is controlled one molecule at a time. The influence of stepwise hydration on radiation damage is investigated here using the example of proton-induced charge transfer in two biomolecular targets. Uracil has been widely investigated both experimentally and theoretically in this context, and 2-aminooxazole was recently shown to be a potentially important intermediate in prebiotic chemistry. Focusing here on doubly hydrated biomolecules, stable structures and infrared spectra were obtained by combining the results of molecular dynamics simulations with those of quantum chemistry calculations performed at the density-functional theory level with the double hybrid M06-2X functional. The charge-transfer cross-sections upon proton impact were obtained from ab initio molecular calculations and after applying a semi-classical approach to investigate the collision. Our results suggest a significant relationship between the detailed hydration structure and the efficacy of proton-induced charge transfer, highlighting the competing roles of inter- and intramolecular hydrogen bonding.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know