The origin of selectivity in the trimerization of 1,3-cyclopentadiene from an activation strain perspective
Journal of Molecular Modeling, ISSN: 0948-5023, Vol: 30, Issue: 10, Page: 323
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Context: Quantum chemical modeling (DFT-PBE0/cc-pVTZ) of the [4 + 2]-cycloaddition reaction of 1,3-cyclopentadiene (CPD) to (exo/endo)-dicyclopentadiene (DCPD) was carried out, resulting in 14 products—CPD trimers. According to calculations, exo-addition of CPD to the norbornene (NB) fragment of DCPD and trans-addition of CPD to the cyclopentene (CP) fragment of DCPD are kinetically preferred. Ring strain energies E were calculated for all trimers using the homodesmotic reaction approach. The least strained trimers are formed by exo-addition of CPD to the NB fragment of exo-DCPD, while the most strained ones are formed by endo-addition of CPD to the NB fragment of endo-DCPD. E values are in good agreement with thermodynamic stability of trimers. Analysis of activation energy using the activation strain model showed steric effects causing deformation of the DCPD molecule upon reaching the transition state to be the leading factor of the magnitude of the cycloaddition reaction activation barrier. Deformation of the DCPD molecule mostly occurs in two dihedral angles—the angle of escape of H atoms from the plane of the double bond involved in cycloaddition and the angle between the NB and CP fragments. The sum of deviations of these angles in the transition states (or products) structures is in good agreement with Gibbs activation energies of cycloaddition reactions of CPD to DCPD. Methods: Quantum chemical calculations were carried out using density functional theory in Gaussian 09 software. Hybrid exchange–correlation PBE0 functional was used with cc-pVTZ basis set.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203042661&origin=inward; http://dx.doi.org/10.1007/s00894-024-06117-6; http://www.ncbi.nlm.nih.gov/pubmed/39227503; https://link.springer.com/10.1007/s00894-024-06117-6; https://dx.doi.org/10.1007/s00894-024-06117-6; https://link.springer.com/article/10.1007/s00894-024-06117-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know